National Repository of Grey Literature 7 records found  Search took 0.00 seconds. 
Intermolecular interactions in proteins
Kysilka, Jiří ; Vondrášek, Jiří (advisor) ; Ettrich, Rüdiger (referee) ; Banáš, Pavel (referee)
Intermolecular Interactions in Proteins - Abstract Mgr. Jiří Kysilka Non-covalent interactions are responsible for the protein folding and the molecular recognition during the protein interaction with other molecules, including various ligands, other proteins and solvent molecules. In order to understand these processes, exhibited by protein molecules, a proper description of non-covalent interactions is needful. Most methods that are computationally available for the systems of biological interest have difficulties handling with the dispersion term. In this thesis, a density functional theory / coupled clusters (DFT/CC) correction scheme is utilized for a set of small molecules, interacting with a graphitic surface. The results serve as a benchmark for the interaction of the functional groups of proteins with hydrophobic environment. In the following part of this thesis, the role of non-covalent interactions in proteins was studied for the processes of protein-protein interaction and protein hydration. Interaction interfaces has been localized in a set of 69 protein dimers and their composition has been characterized. Interfaces has been shown to prefer branched-chain hydrophobic amino acids (Ile, Leu, Val), aromatic amino acids (Phe, Tyr) and exclude the charged amino acids except of Arg. It was...
Interaction preferences in protein - DNA complexes
Jakubec, Dávid ; Vondrášek, Jiří (advisor) ; Berka, Karel (referee)
Interaction preferences in protein - DNA complexes Dávid Jakubec Abstract Interactions of proteins with DNA lie at the basis of many fundamental bio- logical processes. Despite ongoing efforts, the rules governing the recognition of specific nucleic acid sequences have still not been universally elucidated. In this work, I attempt to explore the recognition process by splitting the intricate network of contacts at the protein - DNA interface into contribu- tions of individual amino acid - nucleotide pairs. These pairs are extracted from existing high-resolution structures of protein - DNA complexes and in- vestigated by bioinformatics and computational-chemistry based methods. Criteria of specificity based on the coupling of observed geometrical prefer- ences and the respective interaction energies are introduced. The application of these criteria is used to expand the library of amino acid - nucleotide pairs potentially significant for direct sequence recognition. Electrostatic poten- tial maps are calculated for individual nucleotides as well as for selected complexes to investigate the physical basis of the observed specificity. 1
Quantum-chemical study of noncovalent interactions
Sedlák, Róbert ; Hobza, Pavel (advisor) ; Havlas, Zdeněk (referee) ; Černušák, Ivan (referee)
The aim of this thesis is to investigate strength and origin of the stabilization for various types of noncovalent interactions. As this knowledge could lead to a deeper understand- ing and rationalization of the binding phenomena. Further, to participate on the de- velopment of new noncovalent data sets, which are nowadays inevitable in the process of parametrization and validation of new computational methods. In all the studies, different binding motifs of model complexes, which represent usually crystal structures, structures from unrelaxed scans or the local minima, were investi- gated. The calculations of the reference stabilization energies were carried out at ab initio level (e.g. CCSD(T)/CBS, QCISD(T)/CBS). Further, the accuracy of more ap- proximate methods (e.g. MP2.5, DFT-D or SQM methods) toward reference method, was tested. In order to obtain the nature of the stabilization the DFT-SAPT decompo- sition was frequently utilized. In the first part of the thesis, the importance and basic characteristics of different types of noncovalent interactions (e.g. halogen bond, hydrogen bond, π· · · π interaction etc.), are discussed. The second part provides the description of computational methods which were essential for our investigation. The third part of the thesis provides an overview for part...
Interaction preferences in protein - DNA complexes
Jakubec, Dávid ; Vondrášek, Jiří (advisor) ; Berka, Karel (referee)
Interaction preferences in protein - DNA complexes Dávid Jakubec Abstract Interactions of proteins with DNA lie at the basis of many fundamental bio- logical processes. Despite ongoing efforts, the rules governing the recognition of specific nucleic acid sequences have still not been universally elucidated. In this work, I attempt to explore the recognition process by splitting the intricate network of contacts at the protein - DNA interface into contribu- tions of individual amino acid - nucleotide pairs. These pairs are extracted from existing high-resolution structures of protein - DNA complexes and in- vestigated by bioinformatics and computational-chemistry based methods. Criteria of specificity based on the coupling of observed geometrical prefer- ences and the respective interaction energies are introduced. The application of these criteria is used to expand the library of amino acid - nucleotide pairs potentially significant for direct sequence recognition. Electrostatic poten- tial maps are calculated for individual nucleotides as well as for selected complexes to investigate the physical basis of the observed specificity. 1
Intermolecular interactions in proteins
Kysilka, Jiří ; Vondrášek, Jiří (advisor) ; Ettrich, Rüdiger (referee) ; Banáš, Pavel (referee)
Intermolecular Interactions in Proteins - Abstract Mgr. Jiří Kysilka Non-covalent interactions are responsible for the protein folding and the molecular recognition during the protein interaction with other molecules, including various ligands, other proteins and solvent molecules. In order to understand these processes, exhibited by protein molecules, a proper description of non-covalent interactions is needful. Most methods that are computationally available for the systems of biological interest have difficulties handling with the dispersion term. In this thesis, a density functional theory / coupled clusters (DFT/CC) correction scheme is utilized for a set of small molecules, interacting with a graphitic surface. The results serve as a benchmark for the interaction of the functional groups of proteins with hydrophobic environment. In the following part of this thesis, the role of non-covalent interactions in proteins was studied for the processes of protein-protein interaction and protein hydration. Interaction interfaces has been localized in a set of 69 protein dimers and their composition has been characterized. Interfaces has been shown to prefer branched-chain hydrophobic amino acids (Ile, Leu, Val), aromatic amino acids (Phe, Tyr) and exclude the charged amino acids except of Arg. It was...
Study of interactions of organic matter and its components via molecular dynamics
BARVÍKOVÁ, Hana
Humic acids and humates are principal components of humic substances major organic constituents of soil, peat, coal and water around the world. I was involved in research into molecular dynamics simulations of interactions of quartz surfaces with aqueous solutions of ions and small organic molecules representing basic building blocks of larger biomolecules and functional groups of organic matter. We studied interactions of molecules with surfaces for a set of surface charge densities corresponding to the experimentally or environmentally relevant ranges of pH values employing molecular mechanics, molecular dynamics and ab initio techniques. Simulated quartz surfaces covered the range of surface charge densities 0.00, -0.03, -0.06 and -0.12 C-m-2, approximately corresponding to pH values 4.5, 7.5, 9.5 and 11. As model molecules, benzoic acid, phenol, o-salicylic acid and their conjugated bases were chosen. My task was to prepare topologies and parametric models of selected organic matter basic building blocks organic molecules. I focused on studying interactions of these molecules in an aqueous environment with mineral surface quartz. The aim was to process simulation results and analyse conformations of the adsorption complexes and their thermodynamic properties such as interaction energies, free energies and adsorption geometries.
Computer simulation of interactions of molecules with mineral surfaces
BARVÍKOVÁ, Hana
This thesis is focused on molecular dynamics, modelling interactions and their simulation. One of the tasks was to familiarize with GROMACS, a molecular dynamics simulation software. This work also introduces the basics of molecular dynamics and modelling interactions of organic molecules with mineral surfaces. The aim of the thesis was to solve model tasks in GROMACS and analyze the output results. The thesis describes some of the most important file formats and utilities that are needed for working with GROMACS and the use of both the formats and the utilities. In this program, I built up several systems consisting of combinations of organic molecules such as benzoic acid, phenol, salicylic acid and their conjugate bases with mineral surfaces (quartz crystal) of different surface charge density. Furthermore I analyzed the results of these simulations, behaviour of the structures and adsorption geometries and interaction energies within these systems. The thesis might also serve as a quick introduction and familiarization with GROMACS with emphasis on simulations and analysis of systems with planar interfaces. Within the MetaCentrum Project I worked on the Hermes Computer Cluster belonging to the Faculty of Science at the University of South Bohemia.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.